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The Hilbert space of a free quantum field

F = H0 ⊕H1 ⊕H2 ⊕ ... (1)

where H1 = H and Hn = ⊗nH.

Suppose the 1-particle Hilbert space H is separable, having an
orthonormal basis ei . Then a typical Fock space element is

Ψ = (Ψ0,Ψ1,Ψ2,Ψ3, ...)

= (ψ0, ψiei ,
1

2!
ψijei⊗ej ,

1

3!
ψijkei⊗ej⊗ek , ...) (2)

where ψ0, ψi , ψij , ... are arbitrary complex numbers that are totally
symmetric for the bosonic states.
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In F, the 1-particle annihilation and creation operators, denoted by
a(ψ) and a†(ψ) respectively for all 1-particle states ψ ∈ H, are
defined as follows:

(1) Both a(ψ), a†(ψ) are linear operators in F.

(2) a(ψ) is anti-linear in ψ and a†(ψ) is linear in ψ.

(3) Denote a(ei ) = ai and a†(ei ) = a†i .

(4) Bosonic case: Both ai , a
†
i are derivations on tensors. For a Fock

space element Ψ,

aiΨ = (ψi , ψikek ,
1

2!
ψiklek⊗el , ...) (3)

a†i Ψ = (0, ψ0ei , ψke(i⊗ek),
1

2!
ψkle(i⊗ek⊗el), ...) (4)

where e(i⊗ej) = 1
2 (ei⊗ej + ej⊗ei ).
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It is straightforward to verify that

aiaj = ajai ,

a†i a
†
j = a†j a

†
i ,

aia
†
j − a†j ai = δij . (5)

Furthermore, 〈Φ|aiΨ〉 = 〈a†i Φ|Ψ〉, namely one is the adjoint of the
other.

N =
∑

i a
†
i ai is called the number operator as it measures the number

of particles in each Hilbert space

NΨ = N(Ψ0,Ψ1,Ψ2,Ψ3, ...) = (0Ψ0, 1Ψ1, 2Ψ2, 3Ψ3, ...) (6)

Also, [N, ai ] = −ai and [N, a†i ] = a†i .
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The basis ei is not unique.

A unitary map ei 7→ e ′i = Uei maps an orthonormal basis to another.

U induces a unitary map Ũ in F as follows:

ŨΨ = Ψ′ = (ψ, ψiUei ,
1

2
ψijUei⊗Uej , ...) (7)

such that 〈ŨΨ|ŨΦ〉 = 〈Ψ|Φ〉.
The new annihilation operator a′i is to be compatible with the unitary
map in the sense that a′iΨ

′ = ŨaiΨ, which implies a′i = Ũai Ũ
†.

Lesson: Creation and annihilation operators exist on an arbitrary Fock
space irrespective of the details of how the 1-particle Hilbert space is
constructed.

I have demonstrated it for the bosonic case. A similar construction
exists for the fermionic case also.
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A massless free scalar field (in an arbitrary spacetime) is a hermitian
operator φ on the Fock space that is distribution valued.

All solutions of the field equation form a complex vector space S. A
scalar product in S is defined by

〈f2|f1〉KG = i

∫
Σ
f2 ∗ df1 − f1 ∗ df2 (8)

where Σ is a smooth spacelike hypersurface and f1, f2 are two complex
solutions. The scalar product 〈f2|f1〉KG is independent of the choice Σ
on-shell.

(1) It is linear in the right.

(2) It is anti-linear in the left.

(3) It is hermitian, 〈f2|f1〉KG = 〈f1|f2〉KG.

(4) It is not positive definite.
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For example, in Minkowski space exp(±ik · x) are two solutions on the
mass hyperboloid k2 + m2 = 0, that is either on the positive shell M+

on which k0 = ω = (k2 + m2)1/2 or negative shell M− on which
k0 = −ω.

Their KG scalar products are

〈e ik·x |e ik ′·x〉KG = (2π)32ωδ3(k− k′). (9)

〈e−ik·x |e−ik ′·x〉KG = −(2π)32ωδ3(k− k′). (10)

〈e ik·x |e−ik ′·x〉KG = 0. (11)

Although plane wave solutions do not have finite norm, we can
construct solutions of finite KG-norm from them: For each element
ψ(k) ∈ L2(M+)

f±(x) =

∫
M+

e±ik·xψ(k) dµ(k), dµ(k) =
d3k

(2π)32ω
. (12)
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f±(x) are solutions of KG equation having finite KG-norm since
〈f±|g±〉KG = ±〈ψ|φ〉 where 〈ψ|φ〉 is the standard L2(M+) scalar
product and 〈f+|g−〉KG = 0.

f±(x) are called the positive and negative frequency solutions of the
KG equation.

The same calculations show that if f (x) is a positive frequency
solution then its complex conjugate f (x) is a negative frequency
solution.

So a general real solution of KG-equation is

φ(x) =
∑

αi fi (x) + αi fi (x) (13)

where fi is the positive frequency solution associated with a basis
ei (k) of the 1-particle Hilbert space H and αi are some complex
numbers. Since each solution is distribution valued, so is φ.
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The signs of 〈f±|g±〉 depend on our choice of ε0123 = −1 and
Hodge-star operation but the relative sign do not. A different choice
will exchange the positive and negative frequency solutions.

The real scalar field operator is defined as follows: A real classical
field is φ =

∑
αi fi (x) + αi fi (x). The complex number αi carrying the

label of the state ei (k) is elevated to the operator ai . Similarly αi is

elevated to the operator a†i . So the hermitian scalar field operator is

the sum φ(x) =
∑

i fi (x)ai + fi (x)a†i . Expanding the solutions,

φ(x) =
∑
i

∫
M+

(
e ik·xei (k)ai + e−ik·xei (k)a†i
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In text books, a(k) =
∑

i ei (k)ai . However,
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∑
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The first systematic study of a scattering process in a gravitational
field was carried out by Hawking and Wald.

They considered a scalar field φin in the far past and a field φout in
the far future when all interactions are turned-off and solutions that
interpolates between these fields.

Suppose the two fields are

φin(x) =
∑

Gi (x)ai + Gi (x)a†i ,

φout(x) =
∑

Hi (x)bi + Hi (x)b†i (15)

Some scattering operator S relates the two fields SφinS
−1 = φout.

This implies

SaiS
−1 =

∑
j

〈Gi |Hj〉KGbj + 〈Gi |Hj〉KGb
†
j . (16)
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Now suppose in the far past Hi decomposes into a positive and a
negative frequency parts as follows: Hi = G ′i + G ′′i . So while Gi is
uniquely associated with the state ei ∈ Hin, we suppose G ′i is
associated with the state Aijej and G ′′i is associated with the state
Bijej , where Aij ,Bij are the Bogoliubov coefficients.

Since Hi is uniquely associated with a state ẽi ∈ Hout in the out
orthonormal basis, 〈Hi |Hj〉KG = 〈ẽi |ẽj〉 = δij . So using
〈Gi |Gj〉KG = −〈ej |ei 〉 we get,

δij = 〈Hi |Hj〉KG = 〈G ′i |G ′j 〉KG + 〈G ′′i |G ′′j 〉KG

= 〈Airer |Ajses〉 − 〈Bjses |Birer 〉 = (AAT − BBT )ij , (17)

that is, AAT − BBT = I .

Similarly, we get other relations.
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orthonormal basis, 〈Hi |Hj〉KG = 〈ẽi |ẽj〉 = δij . So using
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Similarly, supposing that in the far future Gi decomposes into a
positive and a negative frequency parts Gi = H ′i + H ′′i and while Hi is
uniquely associated with the state ẽi ∈ Hout, H

′
i is associated with

the state Cij ẽj and H ′′i is associated with the state Dij ẽj where Cij ,Dij

are the Bogoliubov coefficients.

The independent relations among all the Bogoliubov coefficients can
be re-written as

AA† − BB† = I , ABT = BAT , A† = C , (18)

CC † − DD† = I , CDT = DCT , B† = −D. (19)

Using these relations we get SaS−1 = ATb + B†b†. So if we consider
a vacuum state Ψ0 = (ψ0, 0, 0, ...) ∈ Hin then its image state
SΨ0 ∈ Hout must satisfy the constraint

SaS−1SΨ0 = SaΨ0 = 0 = (ATb + B†b†)Ψ, (20)

which in terms of C ,D takes the form CbΨ = Db†Ψ.
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are the Bogoliubov coefficients.

The independent relations among all the Bogoliubov coefficients can
be re-written as

AA† − BB† = I , ABT = BAT , A† = C , (18)

CC † − DD† = I , CDT = DCT , B† = −D. (19)

Using these relations we get SaS−1 = ATb + B†b†. So if we consider
a vacuum state Ψ0 = (ψ0, 0, 0, ...) ∈ Hin then its image state
SΨ0 ∈ Hout must satisfy the constraint

SaS−1SΨ0 = SaΨ0 = 0 = (ATb + B†b†)Ψ, (20)

which in terms of C ,D takes the form CbΨ = Db†Ψ.

Amit Ghosh (Saha Institute of Nuclear Physics) Hawking Radiation – Revisited December 6, 2018 13 / 18



On an arbitrary Fock state, it gives

C ij

(
ψ̃j , ψ̃jk ẽk ,

1

2!
ψ̃jkl ẽk ⊗ ẽl , ...

)
= D ij

(
0, ψ̃0ẽj , ψ̃k ẽ(j ⊗ ẽk),

1

2!
ψ̃kl ẽ(j ⊗ ẽk ⊗ ẽl), ...

)
. (21)

Since C is one-to-one, its inverse exists. Hence this constraint implies
ψ̃i = ψ̃ijk = · · · = 0, that is Ψ may contain only even particle states.
This means Ψ is populated with particles created in pairs.

The image state SΨ0 measures a total number of particles

〈SΨ0|b†i biSΨ0〉 = Tr(BB†) (22)

where in the second step we have used S† = S−1, that is S-matrix is
unitary. The total number of particles is finite iff B is a trace-class
operator.
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1

2!
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Suppose a massless scalar test field φ interacts with gravity when
some matter collapses spherically to form an event horizon such that
in the far past and future the spacetime is flat. At future null infinity
a positive frequency solution is Hω ∼ exp(−iωu)/r . We extrapolate
this solution to past null infinity to see whether we get a G ′′.

If the angular frequency ω � 1/rs where rs is the Schwarzschild
radius of the collapsing matter (or the wavelength � rs) then the
solution may take a null ray back all the way to past null infinity.

The null ray does not hit the collapsing matter and gets reflected or
absorbed by it. It can take the proposed path only at late times when
most of the matter had already crossed the horizon and the ray is not
affected by the collapsing matter.

The null ray stays outside the event horizon. Since the Kruskal null
coordinates are finite close to the event horizon, we should re-express
the solution in Kruskal null coordinate U = − exp(−κu) where κ is
the surface gravity of the horizon.
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The KG norm of the positive/negative frequency solutions are

〈1
r
e−iωu|1

r
e−iω

′u〉KG = −〈1
r
e iωu|1

r
e iω

′u〉KG = (4π)2ωδ(ω − ω′),

〈1
r
e iωv |1

r
e iω

′v 〉KG = −〈1
r
e−iωv |1

r
e−iω

′v 〉KG = (4π)2ωδ(ω − ω′),

〈1
r
e−iωu|1

r
e iω

′u〉KG = 〈1
r
e−iωv |1

r
e iω

′v 〉KG = 0. (23)

This gives the map between the Hilbert space and positive frequency
solutions

Hk(x) =

∫ ∞
0

exp(−iωu)

r

Lk(ωl)

k!

√
ωle−ωl/2 dω

4πω
(24)

where exp(−x/2)Lk(x)/k!, k = 0, 1, 2, ..., are the orthnormalized
Laguerre polynomials in L2(0,∞) and l is some arbitrary length scale.
By construction, Hk are orthonormal in the KG-norm.
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So Hω ∼ 1
r (−U)iω/κ. In the past null infinity |U| becomes equal to

|v |. Assuming the last ray from future reaching past along the event
horizon is emitted at v = 0, the positive frequency solution of future
extrapolated to past is 1

r (−v)iω/κ. On past the positive/negative
frequency solutions are exp(±iωv) respectively.

The positive/negative frequency parts of 1
r (−v)iω/κ give Aωω′ ,Bωω′ :

Aks = 〈Gs |Hk〉KG = 〈es |Aek〉 =

∫ ∞
0

dωdω′〈es |ω′〉Aωω′〈ω|ek〉

Bks = −〈Gs |Hk〉KG = 〈es |Bek〉 =

∫ ∞
0

dωdω′〈es |ω′〉Bωω′〈ω|ek〉

where 〈es |ω〉 = (Ls(ωl)/s!)
√
l exp(−ωl/2). Calculating the

KG-norms, we get

Aωω′ = − 1

2π

√
ω′

ω

Γ(1 + iω/κ)

(−iω′)1+iω/κ
, Bωω′ =

1

2π

√
ω′

ω

Γ(1 + iω/κ)

(iω′)1+iω/κ
. (25)
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It shows Aωω′ = Bωω′ exp(πω/κ).

Finally, the number of particles with frequency ω is obtained from the
relation (AA† − BB†)ωω = 1

Nω =
1

exp(2πω/κ)− 1
(26)

which comparing with the Bose-Einstein distribution gives a black
body temperature T = κ/2π called the Hawking temperature.

Do local calculations exist that do not involve mapping U,V
coordinates to u, v?

In a spherically symmetric collapse the metric is regular at the horizon
in appropriate coordinates,

ds2 = −α2dUdV + r2
s dΩ (27)

where α is a constant.
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The plane S-wave solutions are exp(−iωU/κ) or exp(iωV /κ), which
are positive frequency on constant T = α(U + V )/2 slices. However,
the positive frequency eigenmodes wrt the timelike Killing vector field
iκ(−U∂U + V ∂V ) are U iω/κ or V−iω/κ.

The KG-norms on constant T slices are

〈 1

rs
e−iωU/κ| 1

rs
e−iω

′U/κ〉KG = −〈 1

rs
e iωU/κ| 1

rs
e iω

′U/κ〉KG

= (4π)2ωδ(ω − ω′) (28)

〈 1

rs
e iωV /κ| 1

rs
e iω

′V /κ〉KG = −〈 1

rs
e−iωV /κ| 1

rs
e−iω

′V /κ〉KG

= (4π)2ωδ(ω − ω′) (29)

〈 1

rs
e−iωU/κ| 1

rs
e iω

′U/κ〉KG = 〈 1

rs
e−iωV /κ| 1

rs
e iω

′V /κ〉KG

= 0. (30)
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〈 1

rs
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Similarly, the KG-norms of (−U)iω/κ and V−iω/κ on constant T slices

〈 1

rs
(−U)iω/κ| 1

rs
(−U)iω

′/κ〉KG = −〈 1

rs
(−U)−iω/κ| 1

rs
(−U)−iω

′/κ〉KG

= (4π)2ωδ(ω − ω′) (31)

〈 1

rs
V−iω/κ| 1

rs
V−iω

′/κ〉KG = −〈 1

rs
V iω/κ| 1

rs
V iω′/κ〉KG

= (4π)2ωδ(ω − ω′) (32)

〈 1

rs
(−U)iω/κ| 1

rs
(−U)−iω

′/κ〉KG = 〈 1

rs
V−iω/κ| 1

rs
V iω′/κ〉KG

= 0. (33)

Because of these norms, the mapping of the positive frequency
solutions to the Hilbert space remain the same as before. So we can
construct both solutions Hk and Gk , orthonormal in KG-norm.
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The A and B coefficients remain the same and hence the final answer.

It is purely a local calculation except that one has to consider the
Killing vector.

It is not completely free of ambiguities because one can introduce
more than one regular coordinates close to the horizon. However, I
believe that the result won’t change in other regular coordinates.
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