Hawking Radiation - Revisited

Amit Ghosh

Saha Institute of Nuclear Physics
December 6, 2018

Contents

- Recap along the line of Hawking-Wald (Geroch) ; Update

- The Hilbert space of a free quantum field

$$
\begin{equation*}
\mathbf{F}=\mathbf{H}_{0} \oplus \mathbf{H}_{1} \oplus \mathbf{H}_{2} \oplus \ldots \tag{1}
\end{equation*}
$$

where $\mathbf{H}_{1}=\mathbf{H}$ and $\mathbf{H}_{n}=\otimes_{n} \mathbf{H}$.

- The Hilbert space of a free quantum field

$$
\begin{equation*}
\mathbf{F}=\mathbf{H}_{0} \oplus \mathbf{H}_{1} \oplus \mathbf{H}_{2} \oplus \ldots \tag{1}
\end{equation*}
$$

where $\mathbf{H}_{1}=\mathbf{H}$ and $\mathbf{H}_{n}=\otimes_{n} \mathbf{H}$.

- Suppose the 1-particle Hilbert space \mathbf{H} is separable, having an orthonormal basis e_{i}. Then a typical Fock space element is

$$
\begin{align*}
\Psi & =\left(\Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \ldots\right) \\
& =\left(\psi_{0}, \psi_{i} e_{i}, \frac{1}{2!} \psi_{i j} e_{i} \otimes e_{j}, \frac{1}{3!} \psi_{i j k} e_{i} \otimes e_{j} \otimes e_{k}, \ldots\right) \tag{2}
\end{align*}
$$

where $\psi_{0}, \psi_{i}, \psi_{i j}, \ldots$ are arbitrary complex numbers that are totally symmetric for the bosonic states.

- In F, the 1-particle annihilation and creation operators, denoted by $a(\psi)$ and $a^{\dagger}(\psi)$ respectively for all 1-particle states $\psi \in \mathbf{H}$, are defined as follows:
- In F, the 1-particle annihilation and creation operators, denoted by $a(\psi)$ and $a^{\dagger}(\psi)$ respectively for all 1-particle states $\psi \in \mathbf{H}$, are defined as follows:
- (1) Both $a(\psi), a^{\dagger}(\psi)$ are linear operators in \mathbf{F}.
- In F, the 1-particle annihilation and creation operators, denoted by $a(\psi)$ and $a^{\dagger}(\psi)$ respectively for all 1-particle states $\psi \in \mathbf{H}$, are defined as follows:
- (1) Both $a(\psi), a^{\dagger}(\psi)$ are linear operators in \mathbf{F}.
- (2) $a(\psi)$ is anti-linear in ψ and $a^{\dagger}(\psi)$ is linear in ψ.
- In F, the 1-particle annihilation and creation operators, denoted by $a(\psi)$ and $a^{\dagger}(\psi)$ respectively for all 1-particle states $\psi \in \mathbf{H}$, are defined as follows:
- (1) Both $a(\psi), a^{\dagger}(\psi)$ are linear operators in \mathbf{F}.
- (2) $a(\psi)$ is anti-linear in ψ and $a^{\dagger}(\psi)$ is linear in ψ.
- (3) Denote $a\left(e_{i}\right)=a_{i}$ and $a^{\dagger}\left(e_{i}\right)=a_{i}^{\dagger}$.
- In F, the 1-particle annihilation and creation operators, denoted by $a(\psi)$ and $a^{\dagger}(\psi)$ respectively for all 1-particle states $\psi \in \mathbf{H}$, are defined as follows:
- (1) Both $a(\psi), a^{\dagger}(\psi)$ are linear operators in \mathbf{F}.
- (2) $a(\psi)$ is anti-linear in ψ and $a^{\dagger}(\psi)$ is linear in ψ.
- (3) Denote $a\left(e_{i}\right)=a_{i}$ and $a^{\dagger}\left(e_{i}\right)=a_{i}^{\dagger}$.
- (4) Bosonic case: Both a_{i}, a_{i}^{\dagger} are derivations on tensors. For a Fock space element Ψ,

$$
\begin{align*}
a_{i} \Psi & =\left(\psi_{i}, \psi_{i k} e_{k}, \frac{1}{2!} \psi_{i k l} e_{k} \otimes e_{l}, \ldots\right) \tag{3}\\
a_{i}^{\dagger} \Psi & =\left(0, \psi_{0} e_{i}, \psi_{k} e_{(i} \otimes e_{k}, \frac{1}{2!} \psi_{k l} e_{(i} \otimes e_{k} \otimes e_{l}, \ldots\right) \tag{4}
\end{align*}
$$

where $\left.e_{(i} \otimes e_{j}\right)=\frac{1}{2}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)$.

- It is straightforward to verify that

$$
\begin{array}{r}
a_{i} a_{j}=a_{j} a_{i}, \\
a_{i}^{\dagger} a_{j}^{\dagger}=a_{j}^{\dagger} a_{i}^{\dagger}, \\
a_{i} a_{j}^{\dagger}-a_{j}^{\dagger} a_{i}=\delta_{i j} . \tag{5}
\end{array}
$$

- It is straightforward to verify that

$$
\begin{array}{r}
a_{i} a_{j}=a_{j} a_{i} \\
a_{i}^{\dagger} a_{j}^{\dagger}=a_{j}^{\dagger} a_{i}^{\dagger} \\
a_{i} a_{j}^{\dagger}-a_{j}^{\dagger} a_{i}=\delta_{i j} \tag{5}
\end{array}
$$

- Furthermore, $\left\langle\Phi \mid a_{i} \Psi\right\rangle=\left\langle a_{i}^{\dagger} \Phi \mid \Psi\right\rangle$, namely one is the adjoint of the other.
- It is straightforward to verify that

$$
\begin{array}{r}
a_{i} a_{j}=a_{j} a_{i}, \\
a_{i}^{\dagger} a_{j}^{\dagger}=a_{j}^{\dagger} a_{i}^{\dagger}, \\
a_{i} a_{j}^{\dagger}-a_{j}^{\dagger} a_{i}=\delta_{i j} \tag{5}
\end{array}
$$

- Furthermore, $\left\langle\Phi \mid a_{i} \Psi\right\rangle=\left\langle a_{i}^{\dagger} \Phi \mid \Psi\right\rangle$, namely one is the adjoint of the other.
- $N=\sum_{i} a_{i}^{\dagger} a_{i}$ is called the number operator as it measures the number of particles in each Hilbert space

$$
\begin{equation*}
N \Psi=N\left(\Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \ldots\right)=\left(0 \Psi_{0}, 1 \Psi_{1}, 2 \Psi_{2}, 3 \Psi_{3}, \ldots\right) \tag{6}
\end{equation*}
$$

- It is straightforward to verify that

$$
\begin{array}{r}
a_{i} a_{j}=a_{j} a_{i}, \\
a_{i}^{\dagger} a_{j}^{\dagger}=a_{j}^{\dagger} a_{i}^{\dagger}, \\
a_{i} a_{j}^{\dagger}-a_{j}^{\dagger} a_{i}=\delta_{i j} \tag{5}
\end{array}
$$

- Furthermore, $\left\langle\Phi \mid a_{i} \Psi\right\rangle=\left\langle a_{i}^{\dagger} \Phi \mid \Psi\right\rangle$, namely one is the adjoint of the other.
- $N=\sum_{i} a_{i}^{\dagger} a_{i}$ is called the number operator as it measures the number of particles in each Hilbert space

$$
\begin{equation*}
N \Psi=N\left(\Psi_{0}, \Psi_{1}, \Psi_{2}, \Psi_{3}, \ldots\right)=\left(0 \Psi_{0}, 1 \Psi_{1}, 2 \Psi_{2}, 3 \Psi_{3}, \ldots\right) \tag{6}
\end{equation*}
$$

- Also, $\left[N, a_{i}\right]=-a_{i}$ and $\left[N, a_{i}^{\dagger}\right]=a_{i}^{\dagger}$.
- The basis e_{i} is not unique.
- The basis e_{i} is not unique.
- A unitary map $e_{i} \mapsto e_{i}^{\prime}=U e_{i}$ maps an orthonormal basis to another.
- The basis e_{i} is not unique.
- A unitary map $e_{i} \mapsto e_{i}^{\prime}=U e_{i}$ maps an orthonormal basis to another.
- U induces a unitary map \tilde{U} in \mathbf{F} as follows:

$$
\begin{equation*}
\tilde{U} \Psi=\Psi^{\prime}=\left(\psi, \psi_{i} U e_{i}, \frac{1}{2} \psi_{i j} U e_{i} \otimes U e_{j}, \ldots\right) \tag{7}
\end{equation*}
$$

such that $\langle\tilde{U} \Psi \mid \tilde{U} \Phi\rangle=\langle\Psi \mid \Phi\rangle$.

- The basis e_{i} is not unique.
- A unitary map $e_{i} \mapsto e_{i}^{\prime}=U e_{i}$ maps an orthonormal basis to another.
- U induces a unitary map \tilde{U} in \mathbf{F} as follows:

$$
\begin{equation*}
\tilde{U} \Psi=\psi^{\prime}=\left(\psi, \psi_{i} U e_{i}, \frac{1}{2} \psi_{i j} U e_{i} \otimes U e_{j}, \ldots\right) \tag{7}
\end{equation*}
$$

such that $\langle\tilde{U} \Psi \mid \tilde{U} \Phi\rangle=\langle\Psi \mid \Phi\rangle$.

- The new annihilation operator ${\underset{\sim}{a}}_{i}^{\prime}$ is to be compatible with the unitary map in the sense that $a_{i}^{\prime} \Psi^{\prime}=\tilde{U} a_{i} \Psi$, which implies $a_{i}^{\prime}=\tilde{U} a_{i} \tilde{U}^{\dagger}$.
- The basis e_{i} is not unique.
- A unitary map $e_{i} \mapsto e_{i}^{\prime}=U e_{i}$ maps an orthonormal basis to another.
- U induces a unitary map \tilde{U} in \mathbf{F} as follows:

$$
\begin{equation*}
\tilde{U} \Psi=\psi^{\prime}=\left(\psi, \psi_{i} U e_{i}, \frac{1}{2} \psi_{i j} U e_{i} \otimes U e_{j}, \ldots\right) \tag{7}
\end{equation*}
$$

such that $\langle\tilde{U} \Psi \mid \tilde{U} \Phi\rangle=\langle\Psi \mid \Phi\rangle$.

- The new annihilation operator ${\underset{\tilde{U}}{i}}_{\prime}^{i}$ is to be compatible with the unitary map in the sense that $a_{i}^{\prime} \Psi^{\prime}=\tilde{U} a_{i} \Psi$, which implies $a_{i}^{\prime}=\tilde{U} a_{i} \tilde{U}^{\dagger}$.
- Lesson: Creation and annihilation operators exist on an arbitrary Fock space irrespective of the details of how the 1-particle Hilbert space is constructed.
- The basis e_{i} is not unique.
- A unitary map $e_{i} \mapsto e_{i}^{\prime}=U e_{i}$ maps an orthonormal basis to another.
- U induces a unitary map \tilde{U} in \mathbf{F} as follows:

$$
\begin{equation*}
\tilde{U} \Psi=\psi^{\prime}=\left(\psi, \psi_{i} U e_{i}, \frac{1}{2} \psi_{i j} U e_{i} \otimes U e_{j}, \ldots\right) \tag{7}
\end{equation*}
$$

such that $\langle\tilde{U} \Psi \mid \tilde{U} \Phi\rangle=\langle\Psi \mid \Phi\rangle$.

- The new annihilation operator ${\underset{\tilde{U}}{i}}_{\prime}^{i}$ is to be compatible with the unitary map in the sense that $a_{i}^{\prime} \Psi^{\prime}=\tilde{U} a_{i} \Psi$, which implies $a_{i}^{\prime}=\tilde{U} a_{i} \tilde{U}^{\dagger}$.
- Lesson: Creation and annihilation operators exist on an arbitrary Fock space irrespective of the details of how the 1-particle Hilbert space is constructed.
- I have demonstrated it for the bosonic case. A similar construction exists for the fermionic case also.
- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- All solutions of the field equation form a complex vector space \mathbf{S}. A scalar product in \mathbf{S} is defined by

$$
\begin{equation*}
\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}=i \int_{\Sigma} \overline{f_{2}} * d f_{1}-f_{1} * d \overline{f_{2}} \tag{8}
\end{equation*}
$$

where Σ is a smooth spacelike hypersurface and f_{1}, f_{2} are two complex solutions. The scalar product $\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}$ is independent of the choice Σ on-shell.

- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- All solutions of the field equation form a complex vector space \mathbf{S}. A scalar product in \mathbf{S} is defined by

$$
\begin{equation*}
\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}=i \int_{\Sigma} \overline{f_{2}} * d f_{1}-f_{1} * d \overline{f_{2}} \tag{8}
\end{equation*}
$$

where Σ is a smooth spacelike hypersurface and f_{1}, f_{2} are two complex solutions. The scalar product $\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}$ is independent of the choice Σ on-shell.

- (1) It is linear in the right.
- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- All solutions of the field equation form a complex vector space \mathbf{S}. A scalar product in \mathbf{S} is defined by

$$
\begin{equation*}
\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}=i \int_{\Sigma} \overline{f_{2}} * d f_{1}-f_{1} * d \overline{f_{2}} \tag{8}
\end{equation*}
$$

where Σ is a smooth spacelike hypersurface and f_{1}, f_{2} are two complex solutions. The scalar product $\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}$ is independent of the choice Σ on-shell.

- (1) It is linear in the right.
- (2) It is anti-linear in the left.
- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- All solutions of the field equation form a complex vector space \mathbf{S}. A scalar product in \mathbf{S} is defined by

$$
\begin{equation*}
\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}=i \int_{\Sigma} \overline{f_{2}} * d f_{1}-f_{1} * d \overline{f_{2}} \tag{8}
\end{equation*}
$$

where Σ is a smooth spacelike hypersurface and f_{1}, f_{2} are two complex solutions. The scalar product $\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}$ is independent of the choice Σ on-shell.

- (1) It is linear in the right.
- (2) It is anti-linear in the left.
- (3) It is hermitian, ${\overline{\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}}}=\left\langle f_{1} \mid f_{2}\right\rangle_{\mathrm{KG}}$.
- A massless free scalar field (in an arbitrary spacetime) is a hermitian operator ϕ on the Fock space that is distribution valued.
- All solutions of the field equation form a complex vector space \mathbf{S}. A scalar product in \mathbf{S} is defined by

$$
\begin{equation*}
\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}=i \int_{\Sigma} \overline{f_{2}} * d f_{1}-f_{1} * d \overline{f_{2}} \tag{8}
\end{equation*}
$$

where Σ is a smooth spacelike hypersurface and f_{1}, f_{2} are two complex solutions. The scalar product $\left\langle f_{2} \mid f_{1}\right\rangle_{\mathrm{KG}}$ is independent of the choice Σ on-shell.

- (1) It is linear in the right.
- (2) It is anti-linear in the left.
- (3) It is hermitian, ${\overline{\left\langle f_{2} \mid f_{1}\right\rangle}}_{\mathrm{KG}}=\left\langle f_{1} \mid f_{2}\right\rangle_{\mathrm{KG}}$.
- (4) It is not positive definite.
- For example, in Minkowski space $\exp (\pm i k \cdot x)$ are two solutions on the mass hyperboloid $k^{2}+m^{2}=0$, that is either on the positive shell \mathbf{M}_{+} on which $k^{0}=\omega=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$ or negative shell \mathbf{M}_{-}on which $k^{0}=-\omega$.
- For example, in Minkowski space $\exp (\pm i k \cdot x)$ are two solutions on the mass hyperboloid $k^{2}+m^{2}=0$, that is either on the positive shell \mathbf{M}_{+} on which $k^{0}=\omega=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$ or negative shell \mathbf{M}_{-}on which $k^{0}=-\omega$.
- Their KG scalar products are

$$
\begin{align*}
& \left\langle e^{i k \cdot x} \mid e^{i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=(2 \pi)^{3} 2 \omega \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{9}\\
& \left\langle e^{-i k \cdot x} \mid e^{-i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=-(2 \pi)^{3} 2 \omega \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) . \tag{10}\\
& \left\langle e^{i k \cdot x} \mid e^{-i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=0 \tag{11}
\end{align*}
$$

- For example, in Minkowski space $\exp (\pm i k \cdot x)$ are two solutions on the mass hyperboloid $k^{2}+m^{2}=0$, that is either on the positive shell \mathbf{M}_{+} on which $k^{0}=\omega=\left(\mathbf{k}^{2}+m^{2}\right)^{1 / 2}$ or negative shell \mathbf{M}_{-}on which $k^{0}=-\omega$.
- Their KG scalar products are

$$
\begin{align*}
& \left\langle e^{i k \cdot x} \mid e^{i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=(2 \pi)^{3} 2 \omega \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{9}\\
& \left\langle e^{-i k \cdot x} \mid e^{-i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=-(2 \pi)^{3} 2 \omega \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \tag{10}\\
& \left\langle e^{i k \cdot x} \mid e^{-i k^{\prime} \cdot x}\right\rangle_{\mathrm{KG}}=0 \tag{11}
\end{align*}
$$

- Although plane wave solutions do not have finite norm, we can construct solutions of finite KG-norm from them: For each element $\psi(\mathbf{k}) \in \mathbf{L}_{2}\left(\mathbf{M}_{+}\right)$

$$
\begin{equation*}
f_{ \pm}(x)=\int_{M_{+}} e^{ \pm i k \cdot x} \psi(\mathbf{k}) d \mu(\mathbf{k}), d \mu(\mathbf{k})=\frac{d^{3} k}{(2 \pi)^{3} 2 \omega} \tag{12}
\end{equation*}
$$

- $f_{ \pm}(x)$ are solutions of KG equation having finite KG -norm since $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle_{\mathrm{KG}}= \pm\langle\psi \mid \phi\rangle$ where $\langle\psi \mid \phi\rangle$ is the standard $\mathbf{L}_{2}\left(\mathbf{M}_{+}\right)$scalar product and $\left\langle f_{+} \mid g_{-}\right\rangle_{\mathrm{KG}}=0$.
- $f_{ \pm}(x)$ are solutions of KG equation having finite KG -norm since $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle_{\mathrm{KG}}= \pm\langle\psi \mid \phi\rangle$ where $\langle\psi \mid \phi\rangle$ is the standard $\mathbf{L}_{2}\left(\mathbf{M}_{+}\right)$scalar product and $\left\langle f_{+} \mid g_{-}\right\rangle_{\mathrm{KG}}=0$.
- $f_{ \pm}(x)$ are called the positive and negative frequency solutions of the KG equation.
- $f_{ \pm}(x)$ are solutions of KG equation having finite KG-norm since $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle_{\mathrm{KG}}= \pm\langle\psi \mid \phi\rangle$ where $\langle\psi \mid \phi\rangle$ is the standard $\mathbf{L}_{2}\left(\mathbf{M}_{+}\right)$scalar product and $\left\langle f_{+} \mid g_{-}\right\rangle_{\mathrm{KG}}=0$.
- $f_{ \pm}(x)$ are called the positive and negative frequency solutions of the KG equation.
- The same calculations show that if $f(x)$ is a positive frequency solution then its complex conjugate $\overline{f(x)}$ is a negative frequency solution.
- $f_{ \pm}(x)$ are solutions of KG equation having finite KG -norm since $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle_{\mathrm{KG}}= \pm\langle\psi \mid \phi\rangle$ where $\langle\psi \mid \phi\rangle$ is the standard $\mathbf{L}_{2}\left(\mathbf{M}_{+}\right)$scalar product and $\left\langle f_{+} \mid g_{-}\right\rangle_{\mathrm{KG}}=0$.
- $f_{ \pm}(x)$ are called the positive and negative frequency solutions of the KG equation.
- The same calculations show that if $f(x)$ is a positive frequency solution then its complex conjugate $\overline{f(x)}$ is a negative frequency solution.
- So a general real solution of KG-equation is

$$
\begin{equation*}
\phi(x)=\sum \alpha_{i} f_{i}(x)+\overline{\alpha_{i} f_{i}(x)} \tag{13}
\end{equation*}
$$

where f_{i} is the positive frequency solution associated with a basis $e_{i}(\mathbf{k})$ of the 1-particle Hilbert space \mathbf{H} and α_{i} are some complex numbers. Since each solution is distribution valued, so is ϕ.

- The signs of $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle$depend on our choice of $\epsilon_{0123}=-1$ and Hodge-star operation but the relative sign do not. A different choice will exchange the positive and negative frequency solutions.
- The signs of $\left\langle f_{ \pm} \mid g_{ \pm}\right\rangle$depend on our choice of $\epsilon_{0123}=-1$ and Hodge-star operation but the relative sign do not. A different choice will exchange the positive and negative frequency solutions.
- The real scalar field operator is defined as follows: A real classical field is $\phi=\sum \alpha_{i} f_{i}(x)+\overline{\alpha_{i} f_{i}(x)}$. The complex number α_{i} carrying the label of the state $e_{i}(\mathbf{k})$ is elevated to the operator a_{i}. Similarly $\overline{\alpha_{i}}$ is elevated to the operator a_{i}^{\dagger}. So the hermitian scalar field operator is the sum $\phi(x)=\sum_{i} f_{i}(x) a_{i}+\overline{f_{i}(x)} a_{i}^{\dagger}$. Expanding the solutions,

$$
\begin{equation*}
\phi(x)=\sum_{i} \int_{M_{+}}\left(e^{i k \cdot x} e_{i}(\mathbf{k}) a_{i}+e^{-i k \cdot x} \overline{e_{i}(\mathbf{k})} a_{i}^{\dagger}\right) d \mu(\mathbf{k}) \tag{14}
\end{equation*}
$$

In text books, $a(\mathbf{k})=\sum_{i} e_{i}(\mathbf{k}) a_{i}$. However, $\left[a(\mathbf{k}), a^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=\sum_{i} e_{i}(\mathbf{k}) \overline{e_{i}\left(\mathbf{k}^{\prime}\right)}=(2 \pi)^{3} 2 \omega(\mathbf{k}) \delta^{3}\left(\mathbf{k}-\mathbf{k}^{\prime}\right)$.

- The first systematic study of a scattering process in a gravitational field was carried out by Hawking and Wald.
- The first systematic study of a scattering process in a gravitational field was carried out by Hawking and Wald.
- They considered a scalar field $\phi_{\text {in }}$ in the far past and a field $\phi_{\text {out }}$ in the far future when all interactions are turned-off and solutions that interpolates between these fields.
- The first systematic study of a scattering process in a gravitational field was carried out by Hawking and Wald.
- They considered a scalar field $\phi_{\text {in }}$ in the far past and a field $\phi_{\text {out }}$ in the far future when all interactions are turned-off and solutions that interpolates between these fields.
- Suppose the two fields are

$$
\begin{align*}
& \phi_{\mathrm{in}}(x)=\sum G_{i}(x) a_{i}+\overline{G_{i}(x)} a_{i}^{\dagger} \\
& \phi_{\mathrm{out}}(x)=\sum H_{i}(x) b_{i}+\overline{H_{i}(x)} b_{i}^{\dagger} \tag{15}
\end{align*}
$$

- The first systematic study of a scattering process in a gravitational field was carried out by Hawking and Wald.
- They considered a scalar field $\phi_{\text {in }}$ in the far past and a field $\phi_{\text {out }}$ in the far future when all interactions are turned-off and solutions that interpolates between these fields.
- Suppose the two fields are

$$
\begin{align*}
& \phi_{\text {in }}(x)=\sum G_{i}(x) a_{i}+\overline{G_{i}(x)} a_{i}^{\dagger} \\
& \phi_{\text {out }}(x)=\sum H_{i}(x) b_{i}+\overline{H_{i}(x)} b_{i}^{\dagger} \tag{15}
\end{align*}
$$

- Some scattering operator S relates the two fields $S \phi_{\text {in }} S^{-1}=\phi_{\text {out }}$. This implies

$$
\begin{equation*}
S a_{i} S^{-1}=\sum_{j}\left\langle G_{i} \mid H_{j}\right\rangle_{\mathrm{KG}} b_{j}+\left\langle G_{i} \mid \bar{H}_{j}\right\rangle_{\mathrm{KG}} b_{j}^{\dagger} \tag{16}
\end{equation*}
$$

- Now suppose in the far past H_{i} decomposes into a positive and a negative frequency parts as follows: $H_{i}=G_{i}^{\prime}+\overline{G_{i}^{\prime \prime}}$. So while G_{i} is uniquely associated with the state $e_{i} \in \mathbf{H}_{\mathrm{in}}$, we suppose G_{i}^{\prime} is associated with the state $A_{i j} e_{j}$ and $G_{i}^{\prime \prime}$ is associated with the state $\overline{B_{i j}} e_{j}$, where $A_{i j}, B_{i j}$ are the Bogoliubov coefficients.
- Now suppose in the far past H_{i} decomposes into a positive and a negative frequency parts as follows: $H_{i}=G_{i}^{\prime}+\overline{G_{i}^{\prime \prime}}$. So while G_{i} is uniquely associated with the state $e_{i} \in \mathbf{H}_{\mathrm{in}}$, we suppose G_{i}^{\prime} is associated with the state $A_{i j} e_{j}$ and $G_{i}^{\prime \prime}$ is associated with the state $\overline{B_{i j}} e_{j}$, where $A_{i j}, B_{i j}$ are the Bogoliubov coefficients.
- Since H_{i} is uniquely associated with a state $\tilde{e}_{i} \in \mathbf{H}_{\text {out }}$ in the out orthonormal basis, $\left\langle H_{i} \mid H_{j}\right\rangle_{\mathrm{KG}}=\left\langle\tilde{e}_{i} \mid \tilde{e}_{j}\right\rangle=\delta_{i j}$. So using $\left\langle\overline{G_{i}} \mid \overline{G_{j}}\right\rangle_{\mathrm{KG}}=-\left\langle e_{j} \mid e_{i}\right\rangle$ we get,

$$
\begin{align*}
\delta_{i j} & =\left\langle H_{i} \mid H_{j}\right\rangle_{\mathrm{KG}}=\left\langle G_{i}^{\prime} \mid G_{j}^{\prime}\right\rangle_{\mathrm{KG}}+\left\langle\overline{G_{i}^{\prime \prime}} \mid \overline{G_{j}^{\prime \prime}}\right\rangle_{\mathrm{KG}} \\
& =\left\langle A_{i r} e_{r} \mid A_{j s} e_{s}\right\rangle-\left\langle\overline{B_{j s}} e_{s} \mid \overline{B_{i r}} e_{r}\right\rangle=\left(\bar{A} A^{T}-\bar{B} B^{T}\right)_{i j}, \tag{17}
\end{align*}
$$

that is, $\bar{A} A^{T}-\bar{B} B^{T}=l$.

- Now suppose in the far past H_{i} decomposes into a positive and a negative frequency parts as follows: $H_{i}=G_{i}^{\prime}+\overline{G_{i}^{\prime \prime}}$. So while G_{i} is uniquely associated with the state $e_{i} \in \mathbf{H}_{\mathrm{in}}$, we suppose G_{i}^{\prime} is associated with the state $A_{i j} e_{j}$ and $G_{i}^{\prime \prime}$ is associated with the state $\overline{B_{i j}} e_{j}$, where $A_{i j}, B_{i j}$ are the Bogoliubov coefficients.
- Since H_{i} is uniquely associated with a state $\tilde{e}_{i} \in \mathbf{H}_{\text {out }}$ in the out orthonormal basis, $\left\langle H_{i} \mid H_{j}\right\rangle_{\mathrm{KG}}=\left\langle\tilde{e}_{i} \mid \tilde{e}_{j}\right\rangle=\delta_{i j}$. So using
$\left\langle\overline{G_{i}} \mid \bar{G}_{j}\right\rangle_{\mathrm{KG}}=-\left\langle e_{j} \mid e_{i}\right\rangle$ we get,

$$
\begin{align*}
\delta_{i j} & =\left\langle H_{i} \mid H_{j}\right\rangle_{\mathrm{KG}}=\left\langle G_{i}^{\prime} \mid G_{j}^{\prime}\right\rangle_{\mathrm{KG}}+\left\langle\overline{G_{i}^{\prime \prime}} \mid \overline{G_{j}^{\prime \prime}}\right\rangle_{\mathrm{KG}} \\
& =\left\langle A_{i r} e_{r} \mid A_{j s} e_{s}\right\rangle-\left\langle\overline{B_{j s}} e_{s} \mid \overline{B_{i r}} e_{r}\right\rangle=\left(\bar{A} A^{T}-\bar{B} B^{T}\right)_{i j}, \tag{17}
\end{align*}
$$

that is, $\bar{A} A^{T}-\bar{B} B^{T}=I$.

- Similarly, we get other relations.
- Similarly, supposing that in the far future G_{i} decomposes into a positive and a negative frequency parts $G_{i}=H_{i}^{\prime}+\overline{H_{i}^{\prime \prime}}$ and while H_{i} is uniquely associated with the state $\tilde{e}_{i} \in \mathbf{H}_{\text {out }}, H_{i}^{\prime}$ is associated with the state $C_{i j} \tilde{e}_{j}$ and $H_{i}^{\prime \prime}$ is associated with the state $\overline{D_{i j}} \tilde{e}_{j}$ where $C_{i j}, D_{i j}$ are the Bogoliubov coefficients.
- Similarly, supposing that in the far future G_{i} decomposes into a positive and a negative frequency parts $G_{i}=H_{i}^{\prime}+\overline{H_{i}^{\prime \prime}}$ and while H_{i} is uniquely associated with the state $\tilde{e}_{i} \in \mathbf{H}_{\text {out }}, H_{i}^{\prime}$ is associated with the state $C_{i j} \tilde{e}_{j}$ and $H_{i}^{\prime \prime}$ is associated with the state $\overline{D_{i j}} \tilde{e}_{j}$ where $C_{i j}, D_{i j}$ are the Bogoliubov coefficients.
- The independent relations among all the Bogoliubov coefficients can be re-written as

$$
\begin{array}{ll}
A A^{\dagger}-B B^{\dagger}=I, & A B^{T}=B A^{T}, \quad A^{\dagger}=C \\
C C^{\dagger}-D D^{\dagger}=I, & C D^{T}=D C^{T}, \quad B^{\dagger}=-\bar{D} \tag{19}
\end{array}
$$

- Similarly, supposing that in the far future G_{i} decomposes into a positive and a negative frequency parts $G_{i}=H_{i}^{\prime}+\overline{H_{i}^{\prime \prime}}$ and while H_{i} is uniquely associated with the state $\tilde{e}_{i} \in \mathbf{H}_{\text {out }}, H_{i}^{\prime}$ is associated with the state $C_{i j} \tilde{e}_{j}$ and $H_{i}^{\prime \prime}$ is associated with the state $\overline{D_{i j}} \tilde{e}_{j}$ where $C_{i j}, D_{i j}$ are the Bogoliubov coefficients.
- The independent relations among all the Bogoliubov coefficients can be re-written as

$$
\begin{array}{ll}
A A^{\dagger}-B B^{\dagger}=I, & A B^{T}=B A^{T}, \\
C C^{\dagger}-D D^{\dagger}=I, & C D^{T}=D C^{T}, \tag{19}
\end{array} \quad B^{\dagger}=-\bar{D} .
$$

- Using these relations we get $S a S^{-1}=A^{T} b+B^{\dagger} b^{\dagger}$. So if we consider a vacuum state $\Psi_{0}=\left(\psi_{0}, 0,0, \ldots\right) \in \mathbf{H}_{\text {in }}$ then its image state $S \Psi_{0} \in \mathbf{H}_{\text {out }}$ must satisfy the constraint

$$
\begin{equation*}
S a S^{-1} S \Psi_{0}=S a \Psi_{0}=0=\left(A^{T} b+B^{\dagger} b^{\dagger}\right) \Psi \tag{20}
\end{equation*}
$$

which in terms of C, D takes the form $\bar{C} b \Psi=\bar{D} b^{\dagger} \Psi$.

- On an arbitrary Fock state, it gives

$$
\begin{align*}
& \bar{C}_{i j}\left(\tilde{\psi}_{j}, \tilde{\psi}_{j k} \tilde{e}_{k}, \frac{1}{2!} \tilde{\psi}_{j k l} \tilde{e}_{k} \otimes \tilde{e}_{l}, \ldots\right) \\
& =\bar{D}_{i j}\left(0, \tilde{\psi}_{0} \tilde{e}_{j}, \tilde{\psi}_{k} \tilde{e}_{(j} \otimes \tilde{e}_{k)}, \frac{1}{2!} \tilde{\psi}_{k l} \tilde{e}_{(j} \otimes \tilde{e}_{k} \otimes \tilde{e}_{l)}, \ldots\right) \tag{21}
\end{align*}
$$

Since C is one-to-one, its inverse exists. Hence this constraint implies $\tilde{\psi}_{i}=\tilde{\psi}_{i j k}=\cdots=0$, that is ψ may contain only even particle states. This means Ψ is populated with particles created in pairs.

- On an arbitrary Fock state, it gives

$$
\begin{align*}
& \bar{C}_{i j}\left(\tilde{\psi}_{j}, \tilde{\psi}_{j k} \tilde{e}_{k}, \frac{1}{2!} \tilde{\psi}_{j k l} \tilde{e}_{k} \otimes \tilde{e}_{l}, \ldots\right) \\
& =\bar{D}_{i j}\left(0, \tilde{\psi}_{0} \tilde{e}_{j}, \tilde{\psi}_{k} \tilde{e}_{(j} \otimes \tilde{e}_{k)}, \frac{1}{2!} \tilde{\psi}_{k l} \tilde{e}_{(j} \otimes \tilde{e}_{k} \otimes \tilde{e}_{l)}, \ldots\right) \tag{21}
\end{align*}
$$

Since C is one-to-one, its inverse exists. Hence this constraint implies $\tilde{\psi}_{i}=\tilde{\psi}_{i j k}=\cdots=0$, that is ψ may contain only even particle states. This means Ψ is populated with particles created in pairs.

- The image state $S \Psi_{0}$ measures a total number of particles

$$
\begin{equation*}
\left\langle S \Psi_{0} \mid b_{i}^{\dagger} b_{i} S \Psi_{0}\right\rangle=\operatorname{Tr}\left(B B^{\dagger}\right) \tag{22}
\end{equation*}
$$

where in the second step we have used $S^{\dagger}=S^{-1}$, that is S-matrix is unitary. The total number of particles is finite iff B is a trace-class operator.

- Suppose a massless scalar test field ϕ interacts with gravity when some matter collapses spherically to form an event horizon such that in the far past and future the spacetime is flat. At future null infinity a positive frequency solution is $H_{\omega} \sim \exp (-i \omega u) / r$. We extrapolate this solution to past null infinity to see whether we get a $\overline{G^{\prime \prime}}$.
- Suppose a massless scalar test field ϕ interacts with gravity when some matter collapses spherically to form an event horizon such that in the far past and future the spacetime is flat. At future null infinity a positive frequency solution is $H_{\omega} \sim \exp (-i \omega u) / r$. We extrapolate this solution to past null infinity to see whether we get a $\overline{G^{\prime \prime}}$.
- If the angular frequency $\omega \gg 1 / r_{s}$ where r_{s} is the Schwarzschild radius of the collapsing matter (or the wavelength $\ll r_{s}$) then the solution may take a null ray back all the way to past null infinity.
- Suppose a massless scalar test field ϕ interacts with gravity when some matter collapses spherically to form an event horizon such that in the far past and future the spacetime is flat. At future null infinity a positive frequency solution is $H_{\omega} \sim \exp (-i \omega u) / r$. We extrapolate this solution to past null infinity to see whether we get a $\overline{G^{\prime \prime}}$.
- If the angular frequency $\omega \gg 1 / r_{s}$ where r_{s} is the Schwarzschild radius of the collapsing matter (or the wavelength $\ll r_{s}$) then the solution may take a null ray back all the way to past null infinity.
- The null ray does not hit the collapsing matter and gets reflected or absorbed by it. It can take the proposed path only at late times when most of the matter had already crossed the horizon and the ray is not affected by the collapsing matter.
- Suppose a massless scalar test field ϕ interacts with gravity when some matter collapses spherically to form an event horizon such that in the far past and future the spacetime is flat. At future null infinity a positive frequency solution is $H_{\omega} \sim \exp (-i \omega u) / r$. We extrapolate this solution to past null infinity to see whether we get a $\overline{G^{\prime \prime}}$.
- If the angular frequency $\omega \gg 1 / r_{s}$ where r_{s} is the Schwarzschild radius of the collapsing matter (or the wavelength $\ll r_{s}$) then the solution may take a null ray back all the way to past null infinity.
- The null ray does not hit the collapsing matter and gets reflected or absorbed by it. It can take the proposed path only at late times when most of the matter had already crossed the horizon and the ray is not affected by the collapsing matter.
- The null ray stays outside the event horizon. Since the Kruskal null coordinates are finite close to the event horizon, we should re-express the solution in Kruskal null coordinate $U=-\exp (-\kappa u)$ where κ is the surface gravity of the horizon.
- The KG norm of the positive/negative frequency solutions are

$$
\begin{align*}
& \left\langle\frac{1}{r} e^{-i \omega u} \left\lvert\, \frac{1}{r} e^{-i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=-\left\langle\frac{1}{r} e^{i \omega u} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right), \\
& \left\langle\frac{1}{r} e^{i \omega v} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=-\left\langle\frac{1}{r} e^{-i \omega v} \left\lvert\, \frac{1}{r} e^{-i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right), \\
& \left\langle\frac{1}{r} e^{-i \omega u} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=\left\langle\frac{1}{r} e^{-i \omega v} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=0 . \tag{23}
\end{align*}
$$

- The KG norm of the positive/negative frequency solutions are

$$
\begin{align*}
& \left\langle\frac{1}{r} e^{-i \omega u} \left\lvert\, \frac{1}{r} e^{-i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=-\left\langle\frac{1}{r} e^{i \omega u} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right), \\
& \left\langle\frac{1}{r} e^{i \omega v} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=-\left\langle\frac{1}{r} e^{-i \omega v} \left\lvert\, \frac{1}{r} e^{-i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right), \\
& \left\langle\frac{1}{r} e^{-i \omega u} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} u}\right.\right\rangle_{\mathrm{KG}}=\left\langle\frac{1}{r} e^{-i \omega v} \left\lvert\, \frac{1}{r} e^{i \omega^{\prime} v}\right.\right\rangle_{\mathrm{KG}}=0 . \tag{23}
\end{align*}
$$

- This gives the map between the Hilbert space and positive frequency solutions

$$
\begin{equation*}
H_{k}(x)=\int_{0}^{\infty} \frac{\exp (-i \omega u)}{r} \frac{L_{k}(\omega /)}{k!} \sqrt{\omega /} e^{-\omega / / 2} \frac{d \omega}{4 \pi \omega} \tag{24}
\end{equation*}
$$

where $\exp (-x / 2) L_{k}(x) / k!, k=0,1,2, \ldots$, are the orthnormalized Laguerre polynomials in $\mathbf{L}_{2}(0, \infty)$ and I is some arbitrary length scale. By construction, H_{k} are orthonormal in the KG-norm.

- So $H_{\omega} \sim \frac{1}{r}(-U)^{i \omega / \kappa}$. In the past null infinity $|U|$ becomes equal to $|v|$. Assuming the last ray from future reaching past along the event horizon is emitted at $v=0$, the positive frequency solution of future extrapolated to past is $\frac{1}{r}(-v)^{i \omega / \kappa}$. On past the positive/negative frequency solutions are $\exp (\pm i \omega v)$ respectively.
- So $H_{\omega} \sim \frac{1}{r}(-U)^{i \omega / \kappa}$. In the past null infinity $|U|$ becomes equal to $|v|$. Assuming the last ray from future reaching past along the event horizon is emitted at $v=0$, the positive frequency solution of future extrapolated to past is $\frac{1}{r}(-v)^{i \omega / \kappa}$. On past the positive/negative frequency solutions are $\exp (\pm i \omega v)$ respectively.
- The positive/negative frequency parts of $\frac{1}{r}(-v)^{i \omega / \kappa}$ give $A_{\omega \omega^{\prime}}, B_{\omega \omega^{\prime}}$:

$$
\begin{aligned}
& A_{k s}=\left\langle G_{s} \mid H_{k}\right\rangle_{\mathrm{KG}}=\left\langle e_{s} \mid A e_{k}\right\rangle=\int_{0}^{\infty} d \omega d \omega^{\prime}\left\langle e_{s} \mid \omega^{\prime}\right\rangle A_{\omega \omega^{\prime}}\left\langle\omega \mid e_{k}\right\rangle \\
& B_{k s}=-\left\langle\overline{G_{s}} \mid H_{k}\right\rangle_{\mathrm{KG}}=\left\langle e_{s} \mid B e_{k}\right\rangle=\int_{0}^{\infty} d \omega d \omega^{\prime}\left\langle e_{s} \mid \omega^{\prime}\right\rangle B_{\omega \omega^{\prime}}\left\langle\omega \mid e_{k}\right\rangle
\end{aligned}
$$

where $\left\langle e_{s} \mid \omega\right\rangle=\left(L_{s}(\omega /) / s!\right) \sqrt{l} \exp (-\omega / / 2)$. Calculating the KG-norms, we get

$$
\begin{equation*}
A_{\omega \omega^{\prime}}=-\frac{1}{2 \pi} \sqrt{\frac{\omega^{\prime}}{\omega}} \frac{\Gamma(1+i \omega / \kappa)}{\left(-i \omega^{\prime}\right)^{1+i \omega / \kappa}}, B_{\omega \omega^{\prime}}=\frac{1}{2 \pi} \sqrt{\frac{\omega^{\prime}}{\omega}} \frac{\Gamma(1+i \omega / \kappa)}{\left(i \omega^{\prime}\right)^{1+i \omega / \kappa}} \tag{25}
\end{equation*}
$$

- It shows $A_{\omega \omega^{\prime}}=B_{\omega \omega^{\prime}} \exp (\pi \omega / \kappa)$.
- It shows $A_{\omega \omega^{\prime}}=B_{\omega \omega^{\prime}} \exp (\pi \omega / \kappa)$.
- Finally, the number of particles with frequency ω is obtained from the relation $\left(A A^{\dagger}-B B^{\dagger}\right)_{\omega \omega}=1$

$$
\begin{equation*}
N_{\omega}=\frac{1}{\exp (2 \pi \omega / \kappa)-1} \tag{26}
\end{equation*}
$$

which comparing with the Bose-Einstein distribution gives a black body temperature $T=\kappa / 2 \pi$ called the Hawking temperature.

- It shows $A_{\omega \omega^{\prime}}=B_{\omega \omega^{\prime}} \exp (\pi \omega / \kappa)$.
- Finally, the number of particles with frequency ω is obtained from the relation $\left(A A^{\dagger}-B B^{\dagger}\right)_{\omega \omega}=1$

$$
\begin{equation*}
N_{\omega}=\frac{1}{\exp (2 \pi \omega / \kappa)-1} \tag{26}
\end{equation*}
$$

which comparing with the Bose-Einstein distribution gives a black body temperature $T=\kappa / 2 \pi$ called the Hawking temperature.

- Do local calculations exist that do not involve mapping U, V coordinates to u, v ?
- It shows $A_{\omega \omega^{\prime}}=B_{\omega \omega^{\prime}} \exp (\pi \omega / \kappa)$.
- Finally, the number of particles with frequency ω is obtained from the relation $\left(A A^{\dagger}-B B^{\dagger}\right)_{\omega \omega}=1$

$$
\begin{equation*}
N_{\omega}=\frac{1}{\exp (2 \pi \omega / \kappa)-1} \tag{26}
\end{equation*}
$$

which comparing with the Bose-Einstein distribution gives a black body temperature $T=\kappa / 2 \pi$ called the Hawking temperature.

- Do local calculations exist that do not involve mapping U, V coordinates to u, v ?
- In a spherically symmetric collapse the metric is regular at the horizon in appropriate coordinates,

$$
\begin{equation*}
d s^{2}=-\alpha^{2} d U d V+r_{s}^{2} d \Omega \tag{27}
\end{equation*}
$$

where α is a constant.

- The plane S-wave solutions are $\exp (-i \omega U / \kappa)$ or $\exp (i \omega V / \kappa)$, which are positive frequency on constant $T=\alpha(U+V) / 2$ slices. However, the positive frequency eigenmodes wrt the timelike Killing vector field $i \kappa\left(-U \partial_{U}+V \partial_{V}\right)$ are $U^{i \omega / \kappa}$ or $V^{-i \omega / \kappa}$.
- The plane S-wave solutions are $\exp (-i \omega U / \kappa)$ or $\exp (i \omega V / \kappa)$, which are positive frequency on constant $T=\alpha(U+V) / 2$ slices. However, the positive frequency eigenmodes wrt the timelike Killing vector field $i \kappa\left(-U \partial_{U}+V \partial_{V}\right)$ are $U^{i \omega / \kappa}$ or $V^{-i \omega / \kappa}$.
- The KG-norms on constant T slices are

$$
\begin{align*}
\left\langle\frac{1}{r_{s}} e^{-i \omega U / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{-i \omega^{\prime} U / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}} e^{i \omega U / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{i \omega^{\prime} U / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{28}\\
\left\langle\frac{1}{r_{s}} e^{i \omega V / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{i \omega^{\prime} V / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}} e^{-i \omega V / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{-i \omega^{\prime} V / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{29}\\
\left\langle\frac{1}{r_{s}} e^{-i \omega U / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{i \omega^{\prime} U / \kappa}\right.\right\rangle_{\mathrm{KG}} & =\left\langle\frac{1}{r_{s}} e^{-i \omega V / \kappa} \left\lvert\, \frac{1}{r_{s}} e^{i \omega^{\prime} V / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =0 \tag{30}
\end{align*}
$$

- Similarly, the KG-norms of $(-U)^{i \omega / \kappa}$ and $V^{-i \omega / \kappa}$ on constant T slices

$$
\begin{align*}
\left\langle\frac{1}{r_{s}}(-U)^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}}(-U)^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{31}\\
\left\langle\frac{1}{r_{s}} V^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}} V^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{32}\\
\left\langle\frac{1}{r_{s}}(-U)^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =\left\langle\frac{1}{r_{s}} V^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =0 \tag{33}
\end{align*}
$$

- Similarly, the KG-norms of $(-U)^{i \omega / \kappa}$ and $V^{-i \omega / \kappa}$ on constant T slices

$$
\begin{align*}
\left\langle\frac{1}{r_{s}}(-U)^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}}(-U)^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{31}\\
\left\langle\frac{1}{r_{s}} V^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =-\left\langle\frac{1}{r_{s}} V^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =(4 \pi)^{2} \omega \delta\left(\omega-\omega^{\prime}\right) \tag{32}\\
\left\langle\frac{1}{r_{s}}(-U)^{i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}}(-U)^{-i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} & =\left\langle\frac{1}{r_{s}} V^{-i \omega / \kappa} \left\lvert\, \frac{1}{r_{s}} V^{i \omega^{\prime} / \kappa}\right.\right\rangle_{\mathrm{KG}} \\
& =0 \tag{33}
\end{align*}
$$

- Because of these norms, the mapping of the positive frequency solutions to the Hilbert space remain the same as before. So we can construct both solutions H_{k} and G_{k}, orthonormal in KG-norm.
- The A and B coefficients remain the same and hence the final answer.
- The A and B coefficients remain the same and hence the final answer.
- It is purely a local calculation except that one has to consider the Killing vector.
- The A and B coefficients remain the same and hence the final answer.
- It is purely a local calculation except that one has to consider the Killing vector.
- It is not completely free of ambiguities because one can introduce more than one regular coordinates close to the horizon. However, I believe that the result won't change in other regular coordinates.

